Robustness analysis for identification and control of nonlinear systems
نویسنده
چکیده
This thesis concerns two problems of robustness in the modeling and control of nonlinear dynamical systems. First, I examine the problem of selecting a stable nonlinear state-space model whose open-loop simulations are to match experimental data. I provide a family of techniques for addressing this problem based on minimizing convex upper bounds for simulation error over convex sets of stable nonlinear models. I unify and extend existing convex parameterizations of stable models and convex upper bounds. I then provide a detailed analysis which demonstrates that existing methods based on these principles lead to significantly biased model estimates in the presence of output noise. This thesis contains two algorithmic advances to overcome these difficulties. First, I propose a bias removal algorithm based on techniques from the instrumental-variables literature. Second, for the class of state-affine dynamical models, I introduce a family of tighter convex upper bounds for simulation error which naturally lead to an iterative identification scheme. The performance of this scheme is demonstrated on several benchmark experimental data sets from the system identification literature. The second portion of this thesis addresses robustness analysis for trajectorytracking feedback control applied to nonlinear systems. I introduce a family of numerical methods for computing regions of finite-time invariance (funnels) around solutions of polynomial differential equations. These methods naturally apply to non-autonomous differential equations that arise in closed-loop trajectorytracking control. The performance of these techniques is analyzed through simulated examples. Thesis Co-Supervisor: Russ Tedrake Title: Professor of Electrical Engineering and Computer Science Thesis Co-Supervisor: Alexandre Megretski Title: Professor of Electrical Engineering and Computer Science
منابع مشابه
A Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کاملAn ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models
Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملSecond Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch
This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014